This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Bismuth Chloride Mediated Synthesis, Antimicrobial, and Anti-Inflammatory Activities of New 4-Aryl-2-Amino Thiazoles

T. Giridhar^a; R. Buchi Reddy^b; A. Sunil Kumar^c; G.V. P. Chandra Mouli^c

^a Shodhana Laboratories Ltd. Jeedimetla, Hyderabad, India ^b Inogent Laboratories Pvt. Ltd., Hyderabad, India ^c Department of Chemistry, National Institute of Technology, Warangal, A.P, India

To cite this Article Giridhar, T. , Reddy, R. Buchi , Kumar, A. Sunil and Chandra Mouli, G.V. P.(2008) 'Bismuth Chloride Mediated Synthesis, Antimicrobial, and Anti-Inflammatory Activities of New 4-Aryl-2-Amino Thiazoles', Phosphorus, Sulfur, and Silicon and the Related Elements, 183:8,2058-2072

To link to this Article: DOI: 10.1080/10426500701842019
URL: http://dx.doi.org/10.1080/10426500701842019

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:2058–2072, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500701842019

Bismuth Chloride Mediated Synthesis, Antimicrobial, and Anti-Inflammatory Activities of New 4-Aryl-2-Amino Thiazoles

T. Giridhar,¹ R. Buchi Reddy,² A. Sunil Kumar,³ and G. V. P. Chandra Mouli³

¹Shodhana Laboratories Ltd. Jeedimetla, Hyderabad, India

Synthesis of 4-aryl-2-Amino thiazoles (3a-u), (4a-c), and (5a-c) was achieved from the reaction of 4-butyl phenacyl chlorides (2a-c) with N-substituted thioureas, in the presence of Bismuth Chloride. The antimicrobial and anti-inflammatory activities of the final products were also studied.

Keywords 4-aryl-2-amino thiazoles; 4-butyl phenacyl chlorides; Bismuth chloride

INTRODUCTION

Aminothiazole derivatives exhibit anaesthetic, bactericidal and fungicidal activites. It is also reported that the derivatives of fluro-aryl thiazoles are very active, not only as antiarthritic agents, but act as immunomodulators. Aryl amino thiazoles also possess cardio tonic and antiallergic activities.

The wide spectrum of biological activities of amino thiazoles inculcated enthusiasm in us, to synthesize a series of new 4-aryl-2-aminothiazoles and to study their anti-microbial and anti-inflammatory activities. In the present program, the target 4-aryl-2-aminothiazole derivatives were synthesized by the condensation of substituted phenacyl chlorides with different thioureas. The cyclizing agents tried were poly phosphoric acid (PPA), poly phosphoric ester (PPE), but the yields were not satisfactory and the reaction needs prolonged heating for completion. Therefore, there was a need to search for a better cyclizing agent or catalyst with regards to toxicity, handling, easy availability,

Received 11 March 2007; accepted 24 October 2007.

Address correspondence to G. V. P. Chandramouli, Department of Chemistry, National Institute of Technology, Warangal-04, A.P., India. E-mail: gvpc_2000@yahoo.co.in

²Inogent Laboratories Pvt. Ltd. Hyderabad, India

³Department of Chemistry, National Institute of Technology, Warangal, A.P, India

SCHEME 1 $\mathbf{a} = \text{n-butyl}$; $\mathbf{b} = \text{isobutyl}$; and $\mathbf{c} = \text{ter-butyl}$.

and operational simplicity. Bismuth (III) halides are inexpensive, relatively non-toxic, and insensitive to small amounts of water and environmentally benign reagents, which have been used as mild Lewis catalysts for an array of synthetic organic reactions.⁵

RESULTS AND DISCUSSION

In continuation of our work on synthesis of new heterocyclics, ⁶ we are gratified to report the Bismuth chloride mediate synthesis and biological activity of new-4-aryl-2-amino thiazoles herein. It is interesting to note that the yields increased and the reaction times were reduced when BiCl₃ in DCM was employed (Scheme I).

When Guanyl derivative of thiourea reacted with phenacyl chlorides, compounds **4a–c** were obtained. Similarly, compounds **5a–c** were obtained by the acetylation of the products formed when N-methyl urea reacted with compounds **2a–c**. When we attempted to synthesize the unreported p-butyl phenacyl chlorides (**2a–c**), by Friedel-Crafts electrophilic attack of ClCH₂COCl upon butyl benzenes in the presence of AlCl₃, mixtures of O- & P- substituted products were obtained. However, the yields of Para products increased up to 90–95% by adding catalytic amounts of BiCl₃. N-substituted thioureas⁷(Scheme 2) were prepared in the present scheme by an improved method, using BiCl₃ catalyst.

TABLE I Yields and Reaction Times of 4-Aryl-2-N-substituted Amino Thiozoles with Different Cyclizing Agents

			% Yield (Reaction Time in hours)			
Compound	R	\mathbb{R}^1	By using PPA	By using PPE	By using Bicl ₃ /DCM	
3a	n-butyl	Н	30 (8)	42 (6)	68 (1.0)	
3b	iso-butyl	H	44 (6)	51(4)	90 (1.5)	
3c	tert-butyl	H	37 (5)	48 (6)	97 (1.5)	
3d	n-butyl	CH_3	23(7)	36 (5)	58 (1.5)	
3e	iso-butyl	CH_3	35 (8)	42(7)	78 (1.0)	
3f	tert-butyl	CH_3	27 (6)	48 (5)	81 (2.0)	
3g	n-butyl	Ph	21(7)	16 (4)	52(2.0)	
3 h	iso-butyl	Ph	23 (8)	31 (5)	58 (1.5)	
3i	tert-butyl	Ph	28 (7)	35 (5)	60(1.5)	
3j	n-butyl	$\mathrm{CH_{2}Ph}$	30 (8)	36 (5)	68(2.0)	
3k	iso-butyl	$\mathrm{CH_{2}Ph}$	29 (7)	27 (6)	57 (1.5)	
31	tert-butyl	$\mathrm{CH_2Ph}$	32 (6)	35 (4)	65(1.0)	
3m	n-butyl	$\mathrm{CH_{2}CH_{2}Ph}$	28 (7)	37 (5)	70(2.0)	
3n	iso-butyl	$\mathrm{CH_{2}CH_{2}Ph}$	25(6)	32(4)	60 (1.0)	
3o	tert-butyl	$\mathrm{CH_{2}CH_{2}}$ Ph	42(7)	38 (5)	54(2.0)	
3p	n-butyl	CH_2CH_2 - $C_6H_4(OCH_3)P$	38 (8)	42 (6)	77(2.0)	
3q	iso-butyl	CH_2CH_2 - $C_6H_4(OCH_3)P$	18 (5)	27(5)	54(2.5)	
$3\mathbf{r}$	tert-butyl	CH_2CH_2 - $C_6H_4(OCH_3)P$	22(6)	29 (4)	62(2.0)	
3s	n-butyl	$COCH_3$	27 (7)	32(4)	51 (1.5)	
3t	iso-butyl	$COCH_3$	23 (8)	44 (5)	55(2.0)	
3u	tert-butyl	$COCH_3$	32 (6)	48 (6)	64(1.5)	
4a	n-butyl	_	11(5)	19 (6)	42(15)	
4b	iso-butyl	_	17 (7)	22 (8)	35 (1.0)	
4c	tert-butyl	_	28 (8)	19 (6)	35 (1.5)	
5a	n-butyl	_	22(8)	20(6)	41 (1.5)	
5 b	iso-butyl	_	16 (7)	21 (5)	38(2.0)	
5c	tert-butyl	_	26 (6)	23 (6)	52 (1.0)	

The IR Spectra of Aryl amino thiazoles exhibit absorption band around 3300–3100 cm $^{-1}$ due to NH bond. The IR spectral band around 1580 \pm 10 cm $^{-1}$ is due to C==N and C==C stretching vibrations. The 1H NMR chemical shifts around δ 7.3– δ 7.9 indicate the aromatic protons of 4-aryl systems. The hetero aromatic proton of the thiazole ring is present at δ 5.5–5.7.8 The NH proton appears as a broad singlet around δ 5.2–5.4, which disappears by D_2O exchange. The proton present in the n-butyl side chain of the aromatic ring produces characteristic signals. The benzylic protons appear as triplet near δ 2.5–2.7. The end methyl of n-butyl is observed as triplet at δ 0.8–1.0.

SCHEME 2

Similarly, characteristic signals are observed in 1HNMR for isobutyl side chain. The benzylic protons appear as a doublet around δ 2.5–2.6. The methyl proton is observed as a multiplet around δ 1.8–2.0. The gem dimethyls are seen around δ 0.9–1.0 as a doublet. The ter-butyl protons are observed as a singlet at δ 2.2–2.5 and the N-CH $_3$ protons appear as a singlet at δ 3.8. The mass spectra show intense molecular ion peaks along with prominent M + 2 peaks. The general fragmentation includes the loss of alkyl side chains.

CONCLUSION

In conclusion, BiCl₃ acts as an efficient catalyst for the synthesis of 4-aryl-2-amino thiazoles. BiCl₃ catalyst is much better than PPA and PPE, in terms of increased yields, decreased reaction timing, ease of operation, and in non-toxic character.

ANTIMICROBIAL ACTIVITY

The elementary antibacterial⁹ and antifungal¹⁰ screening tests were conducted following the standard methods (Table II). The gramnegative bacteria used were *Escherichia coli (E.C)* and pseudomonas aeruginosa (P.A), and Bacillus subtilis (B.S) and Staphylococcus aureus (S.A) were the gram-positive bacteria used. Ciprofloxacin (CF) was used as reference standard for antibacterial activity. The fungus used for testing was Candida albicans (C.A). Fluconazole (FZ) was employed as a reference standard for anti-fungal activity.

All the substituted thiozoles exhibit lower antibacterial activity when compared to the standard. But, many of these final compounds exhibit strong anti-fungal activity of comparable range with that of the reference standard namely, the Fluconazole.

ANTI-INFLAMMATORY ACTIVITY

Screening test of all the substituted thiazoles for anti-inflammatory activity was conducted by carrageenin-induced rat-paw edema model, ¹¹

 $\begin{tabular}{ll} \textbf{TABLE II Antimicrobial Activity Studies of 4-Aryl-2-N-Substituted Amino Thiozoles} \end{tabular}$

		Anti	bacteria diame	Anti-fungal activity zone diameter (mm)		
Compound	Concentration $\mu g/ml$	BS	SA	EC	PA	CA
3a	100	8.5	8.0	11.5	12.0	9.5
	500	9.0	8.5	12.0	13.0	10.0
3b	100	8.5	8.5	13.0	12.5	10.0
	500	9.0	9.0	13.5	13.5	10.5
3c	100	8.0	8.0	12.0	13.0	11.0
	500	8.5	8.5	12.5	13.5	11.5
3d	100	8.5	8.0	11.5	12.0	12.0
	500	9.0	9.0	12.5	13.0	12.5
3e	100	8.0	9.0	11.5	12.0	11.0
	500	8.5	9.5	12.0	13.0	11.5
3 f	100	8.0	9.0	11.0	12.0	11.0
	500	8.5	9.5	12.5	12.5	12.0
3g	100	9.0	8.0	12.0	12.0	8.5
	500	9.5	8.5	13.0	12.5	10.0
3h	100	8.5	8.0	11.0	12.0	9.0
	500	9.0	9.0	12.0	13.0	10.0
3i	100	8.0	9.0	11.0	12.0	11.0
	500	8.5	9.5	11.5	12.5	11.5
3j	100	7.0	7.5	10.5	11.5	10.0
	500	7.5	8.0	11.0	12.5	10.5
3k	100	8.0	7.5	11.0	12.0	9.5
	500	8.5	8.5	11.5	12.5	10.0
31	100	8.0	8.0	11.5	12.0	9.0
	500	9.0	8.5	12.0	13.0	10.0
3m	100	8.5	8.0	11.0	12.0	10.0
	500	9.5	8.5	11.5	12.5	10.5
3n	100	8.0	8.5	11.0	12.0	9.0
	500	8.5	9.5	12.0	13.0	9.5
3o	100	9.0	9.5	11.5	11.0	11.0
	500	9.5	9.5	12.0	12.0	11.5
3р	100	8.0	8.5	11.5	11.0	8.5
•	500	8.5	8.5	12.5	12.5	9.0
3q	100	7.5	8.0	10.5	11.0	10.0
•	500	7.5	8.5	11.0	11.5	11.0
3r	100	8.0	7.5	9.0	11.0	8.0
	500	9.0	8.5	9.5	11.5	9.0
3s	100	8.0	8.0	9.0	11.0	9.5
	500	8.5	9.0	9.5	12.0	10.0
3t	100	7.5	8.5	11.5	12.0	12.0
•	500	8.0	9.5	12.0	12.5	12.5
3u	100	8.0	9.0	11.0	11.5	11.5
	500	8.5	9.5	12.0	12.5	12.0

 $(continued\ on\ next\ page)$

TABLE II Antimicrobial Activity	Studies	of 4-Aryl-2-N-Substituted
Amino Thiozoles (Continued)		

	Concentration $\mu g/ml$	Antibacterial activity zone diameter (mm)				Anti-fungal activity zone diameter (mm)
Compound		BS	SA	EC	PA	CA
4a	100	6.5	7.0	11.0	11.5	10.0
	500	7.5	8.0	12.0	12.5	10.5
4b	100	8.0	8.0	11.5	11.0	12.0
	500	8.5	8.5	12.0	12.0	12.5
4c	100	7.5	8.0	11.5	11.0	12.0
	500	8.5	9.0	12.5	12.0	11.5
5a	100	7.0	7.5	11.0	11.5	10.5
	500	8.0	8.5	12.0	12.5	11.0
5b	100	8.0	8.5	11.5	11.0	9.0
	500	9.0	9.5	12.0	12.0	9.5
5c	100	7.5	8.0	11.0	11.5	10.0
	500	8.0	9.0	12.0	12.0	11.0
\mathbf{CF}	100	23.5	10.5	24.0	19.5	_
	500	28.5	13.5	28.0	23.5	_
FZ	100	_	_	_	_	12.0
	500	_	_	_	_	13.5

by employing 0.5% carboxymethyl cellulose as vehicle. The percent reduction in inflammation was calculated with respect to vehicle treated control values (Table III). All these new molecules exhibit moderate anti-inflammatory activity.

EXPERIMENTAL

The melting points were uncorrected. CHNSO analysis was done by Carlo Erba EA 1108 automatic elemental analyzer. I.R Spectra were recorded by Shimadzu FTIR-8108 instrument. ¹H NMR spectra were recorded on Varian Gemini FT NMR 200 MHz instrument. Mass spectra were recorded on Hewlett Packard MSEM-5989 spectrometer.

Preparation of New Phenacyl Chlorides (2a-c)—General Procedure

4-Substituted benzene (50.0 mmol) was added to a stirred mixture of anhydrous aluminum chloride (60.0 mmol), Bismuth trichloride 3.153 g (10.0 mmol) and chloroacetyl chloride 11.29 g (100.0 mmol) in Dichloromethane (125 ml) at 0–5 $^{\circ}$ C. The reaction mass was stirred at 0–5 $^{\circ}$ C for 3–4 h. After the reaction was over, it was poured into ice-cold

S. no.	Compound	Dose mg/kg/po	Inhibition (%)
1.	3a	100	21
2.	3b	100	20
3.	3c	100	30
4.	3d	100	12
5.	3e	100	18
6.	3f	100	16
7.	3g	100	20
8.	3h	100	24
9.	3i	100	33
10.	3j	100	16
11.	3k	100	12
12.	31	100	15
13.	3m	100	_
14.	3n	100	31
15.	30	100	15
16.	3p	100	26
17.	3q	100	19
18.	3r	100	_
19.	3s	100	18
20.	3t	100	11
21.	3u	100	_
22.	4a	100	30
23.	4b	100	32
24.	4c	100	35
25.	5a	100	40
26.	5b	100	41
27.	5c	100	48

TABLE III Anti-inflammatory Activity

water to decompose in aluminum chloride. The organic layer was separated and dichloromethane was completely distilled off under vacuum to get the corresponding phenacyl chloride.

4-(N-butyl) Phenacyl Chloride (2a)

86%. (Found: C, 68.41; H, 7.12; Cl, 16.85%. $C_{12}H_{15}OCl$ requires C, 68.40; H, 7.12; Cl, 16.86%). **IR** (**KBr**, **cm**⁻¹): 1701–1685(C=O), 1605, (C=C). **PMR** (**CDCl**₃, δ **ppm**): 7.85 (d, 2H, Ar-H ortho to C=O), 7.25 (d, 2H, Ar-H meta to C=O), 4.7 (s, 2H, COCH₂), 2.6–2.7 (t, 2H, benzylic), 1.5–1.7 (m, 2H, -CH₂), 1.2–1.5 (m, 2H, -CH₂), 0.85–1.0 (t, 3H, CH₃). **Mass** (**m/z**): 210(M⁺; 3), 161 (M-CH₂Cl, 100), 133 (161-CO, 9).

4-(Isobutyl) Phenacyl Chloride (2b)

87%. (Found: C, 68.42; H, 7.11; Cl, 16.87%. $C_{12}H_{15}OCl$ requires C, 68.40; H, 7.12; Cl, 16.86%). **IR** (**KBr**, **cm**⁻¹): 1701–1685(C=O), 1605, (C=C). **PMR** (**CDCl**₃, δ **ppm**): 7.9 (d, 2H, Ar-H ortho to C=O), 7.3

(d, 2H, Ar-H meta to C=O), 4.7 (S, 2H, COCH₂), 2.5–2.6 (d, 2H, benzylic), 1.8–2.0 (m, 1H, -CH(CH₃)₂, 0.9–1.0 (d, 6H, -CH₃). **Mass (m/z):** $210(M^+; 3)$, 167 (M- C_3H_7 , 3) 161 (M-CH₂Cl, 100), 133 (161-CO, 10).

4-(Ter-butyl) Phenacyl Chloride (2c)

92%. (Found: C, 68.39; H, 7.13; Cl, 16.87% $C_{12}H_{15}OCl$ requires C, 68.40; H, 7.12; Cl, 16.86%). **IR** (**KBr**, **cm**⁻¹): 1701–1685(C=O), 1605, (C=C). **PMR** (**CDCl**₃, δ **ppm**): 7.9 (d, 2H, Ar-H ortho to C=O), 7.5 (d, 2H, Ar-H meta to C=O), 4.7 (s, 2H, COCH₂), 1.35 (s, 9H, CH₃). **Mass** (**m/z**): 210(M⁺; 2), 195 (M-CH₃, 15), 161 (M-CH₂Cl, 100), 146(161-CH₃, 15), 133(161-CO, 5).

Preparation of 2-Amino-4-Aryl Thiazole Derivatives (3a-u): General Procedure

Thiourea 3.80 6g (50.0 mmol), phenacyl chloride (50.0 mmol) along with $BiCl_3$ 3.153 g (10.0 mmol) and 60 ml of Dichloromethane was charged and the reaction mixture was stirred for an additional 30 min at the same temperature. The temperature was raised to reflux, and the reaction mixture was maintained at reflux for 1 to 2 h. Then, it was cooled to ambient temperature and poured into ice-cold water. The product was then separated by ether extraction and evaporation. The product was washed with 10% sodium hydroxide solution followed by water until washing were neutral to P^H and then dried. The product were recrystallized from aqueous methanol.

2-Amino-4-/(4-N-butyl) Phenyl/Thiazole (3a)

 $\begin{array}{l} (68\%),\, \text{m.p.}\ 234-238^{\circ}C.\ (Found\ C,\,67.27;\ H,\,6.90;\ N,\,12.07;\ S,\,13.77\%.\\ C_{13}H_{16}N_{2}S\ requires\ C,\,67.24;\ H,\,6.89;\ N,\,12.06;\ S,\,13.79\%).\ (\textbf{IR\ cm}^{-1})\textbf{:}\\ 3363-3069\ (NH),\,1640-1620\ (C=\!C,\,C=\!N),\,1575,\,1560.\ \textbf{PMR\ (CDCl}_{3},\,\delta\ \textbf{ppm})\textbf{:}\ 8.5-9.3\ (br,\,s,\,2H,\,NH_{2}),\,7.7\ (d,\,2H,\,Ar-H,\,ortho\ to\ thiazole),\,7.30\ (d,\,2H,\,ortho\ to\ butyl),\,7.2\ (s,\,1H,\,thiazole-H),\,2.6-2.8\ (t,\,2H,\,benzylic),\,1.5-1.7\ (m,\,2H,\,CH_{2}),\,1.25-1.45\ (m,\,2H,\,CH_{2}),\,0.8-1.0\ (t,\,3H,\,CH_{3}).\\ \textbf{Mass\ (m/z):}\ 232\ (M^{+};\,68),\,203\ (M-C_{2}H_{5},\,4),\,189\ (M-C_{3}H_{7},\,100). \end{array}$

2-Amino-4-/(4-Iso-butyl) Phenyl/Thiazole (3b)

(90%), m.p. 112%116°C. (Found C, 67.25; H, 6.90; N, 12.03; S, 13.76%. $C_{13}H_{16}N_2S$ requires C, 67.24; H, 6.89; N, 12.06; S, 13.79%). (**IR** cm⁻¹): 3313–3107, 1630, 1598, and 1536. **PMR** (**CDCl**₃, δ **ppm**): 5.2–5.4 (br, s, 2H, NH₂), 7.7 (d, 2H, Ar-H, ortho to thiazole), 7.20 (d, 2H, ortho to iso butyl), 6.7 (s, 1H, thiazole-H), 2.5 (d, 2H, benzylic), 1.8 (m, 1H, CH(CH₃)₂), 0.9 (d, 6H, CH₃). **Mass** (m/z): 232 (M⁺; 47), 217 (M-CH₃, 40), 203 (M-C₂H₅, 4), 189 (M-C₃H₇, 100), 147 (189-NCN H₂, 13).

2-Amino-4-/(4-Ter-butyl) Phenyl/Thiazole (3c)

(97%), m.p. 228–230°C. (Found C, 67.26; H, 6.89; N, 12.0; S, 13.77%. $C_{13}H_{16}N_2S$ requires C, 67.24; H, 6.89; N, 12.06; S, 13.79%). (**IR** cm⁻¹): 3450–3100, 1628, 1606, 1570, 1530. **PMR** (**DMSO-d**₆, δ **ppm**): 8.2–8.6 (br, s, 2H, NH₂ disappeared with D₂O), 7.7 (d, 2H, Ar-H, ortho to thiazole), 7.45 (d, 2H, ortho to ter-butyl), 7.1 (s, 1H, thiazole-H), 1.3 (s, 9H, CH₃). **Mass** (**m/z**): 232 (M⁺; 60), 217 (M-CH₃, 100), 175 (M-C₄H₉, 5), 142 (217-HNCSNH₂, 15).

4-/(4-N-butyl) Phenyl/-2-(N-methyl Amino) Thiazole (3d)

(58%), m.p. $93-95^{\circ}$ C. (Found C, 68.31; H, 7.30; N, 11.39; S, 12.98%. $C_{14}H_{18}N_2S$ requires C, 68.29; H, 7.31; N, 11.38; S, 13.00%). **IR** (cm⁻¹): 3210-3190, 1589, 1570, and 1491. **PMR** (CDCl₃, δ ppm): 7.7 (d, 2H, Ar-H ortho to thiazole), 7.2 (d, 2H, Ar-H ortho to butyl), 6.65(s, 1H, thiazole-H), 6.15 (br, s, 1H, NH), 2.95(s, 3H, N-CH₃), 2.65(t, 2H, benzylic), 1.5-1.7(m, 2H, CH₂), 1.3-1.5(m, 2H, CH₂), 0.9-1.0(t, 3H, CH₃), **Mass** (m/z): 246(M⁺; 72), 218 (M-C₂H₄, 8), 203(M-C₃H₇, 100), 147 (203-NCNHCH₃, 8).

4-/(4-Iso-butyl) Phenyl/-2-(N-methyl Amino) Thiazole (3e)

(78%), m.p. $118-119^{\circ}$ C. (Found C, 68.27; H, 7.33; N, 11.36; S, 13.02%. $C_{14}H_{18}N_2S$ requires C, 68.29; H, 7.31; N, 11.38; S, 13.00%). **IR** (cm⁻¹): 3268, 1581, 1570, 1492, 1465. **PMR** (CDCl₃, δ ppm): 7.7 (d, 2H, Ar-H ortho to thiazole), 7.15 (d, 2H, Ar-H ortho to isobutyl), 6.65(s, 1H, thiazole-H), 6.0 (br, s, 1H, NH), 2.95(s, 3H, N-CH₃), 2.5(d, 2H, benzylic), 1.8-2.0(m, 1H, -CH (CH₃)₂), 0.95(d, 6H, CH₃), **Mass** (m/z): 246(M⁺; 74), 203 (M-C₃H₇, 100), 174(203-HCN,H₂, 3), 149(203-NCNCH₂, 5).

4-/(4-Ter-butyl) Phenyl/-2-(N-methyl Amino) Thiazole (3f)

 $(81\%), \text{ m.p. } 124-128^{\circ}\text{C. (Found C, } 68.27; \text{ H, } 7.33; \text{ N, } 11.37; \text{ S, } 13.01\%. \\ \text{C_{14}H$}_{18}\text{$N_2$S requires C, } 68.29; \text{ H, } 7.31; \text{ N, } 11.38; \text{ S, } 13.00\%). \\ \textbf{IR (cm$^{-1}$):} \\ 3214-3130, 1587, 1566, 1507, 1491. \\ \textbf{PMR (CDCl}_3, \delta \textbf{ppm): } 7.75 \text{ (d, } 2\text{H, } \text{Ar-H ortho to thiazole}), 7.4 \text{ (d, } 2\text{H, } \text{Ar-H ortho to ter-butyl}), 6.65(\text{s, } 1\text{H, } \text{thiazole-H), } 5.75 \text{ (br, s, } 1\text{H, } \text{NH), } 3.0(\text{s, } 3\text{H, } \text{N-CH}_3), 1.35(\text{s, } 9\text{H, } \text{CH}_3), \\ \textbf{Mass (m/z): } 246(\text{M}^+; 72), 231(\text{M-CH}_3, 100), 216 \text{ (M-C}_2\text{H}_6, 8), 203(\text{M-C}_3\text{H}_7, 16), 190(\text{M-C}_4\text{H}_8, 9). \\ \end{aligned}$

4-/(4-N-butyl) Phenyl/-2-(N-phenyl Amino) Thiazole (3g)

(52%), m.p. $162-166^{\circ}$ C. (Found C, 74.01; H, 6.48; N, 9.08; S, 10.39%. $C_{19}H_{20}N_2S$ requires C, 74.02; H, 6.49; N, 9.09; S, 10.38%). **IR** (**cm**⁻¹): 3242–3188, 1620, 1604, 1578, 1498. **PMR** (**CDCl**₃, δ **ppm**): 7.75 (d, 2H, H-7, H-11), 7.45 (m, 5H, N-C₆H₅), 7.1–7.3(d, 2H, H-8, H-10, 1H,

thiazole-H), 6.7 (s, 1H, NH disappeared with D_2O), 2.65(t, 2H, CH_2), 1.65(m, 2H, CH_2), 1.35(m, 2H, CH_2), 0.95(t, 3H, CH_3), **Mass (m/z):** 308 (M⁺; 100), 265 (M- C_3H_7 , 71), 187(265- C_6H_6 , 3).

4-/(4-Iso-butyl) Phenyl/-2-(N-phenyl Amino) Thiazole (3h)

(58%), m.p. $169-173^{\circ}$ C. (Found C, 74.00; H, 6.47; N, 9.10; S, 10.36%. $C_{19}H_{20}N_2S$ requires C, 74.02; H, 6.49; N, 9.09; S, 10.38%). **IR** (cm⁻¹): 3244-3042, 1623, 1592, 1567, 1499. **PMR** (CDCl₃, δ ppm): 7.75 (d, 2H, H-7, H-11), 7.45 (m, 5H, N-C₆H₅), 7.25 (d, 2H, H-8, H-10, 1H, thiazole-H), 6.65 (s, 1H, NH disappeared with D₂O), 2.55(d, 2H, CH₂), 1.9(m, 1H, -CH(CH₃)₂), 0.95(d, 6H, CH₃), **Mass** (m/z): 308 (M⁺; 89), 265 (M-C₃H₇, 100).

4-/(4-Ter-butyl) Phenyl/-2-(N-phenyl Amino) Thiazole (3i)

(60%), m.p. $136-140^{\circ}$ C. (Found C, 74.01; H, 6.48; N, 9.09; S, 10.39%. $C_{19}H_{20}N_2S$ requires C, 74.02; H, 6.49; N, 9.09; S, 10.38%). **IR** (**cm**⁻¹): 3208-3111, 1589, 1561, 1496. **PMR** (**CDCl**₃, δ **ppm**): 7.8 (d, 2H, H-7, H-11), 7.4 (m, 5H, N-C₆H₅, and 2H, H-8, H-10, 1H, thiazole-H), 6.8 (s, 1H, thiazole-H), 1.35(s, 9H, CH_3), **Mass** (**m/z**): 308 (M⁺; 98), 293 (M-CH₃, 100), 265 (293-C₂H₄, 12), 251 (M-C₄H₉, 5).

4-/(4-N-butyl) Phenyl/-2-(N-benzyl Amino) Thiazole (3j)

(68%), m.p. $120-122^{\circ}$ C. (Found C, 74.55; H, 6.81; N, 8.67; S, 9.91%. $C_{20}H_{22}N_2S$ requires C, 74.53; H, 6.83; N, 8.69; S, 9.93%). **IR** (cm⁻¹): 3242-3188, 1620, 1604, 1579, 1443. **PMR** (CDCl₃, δ ppm): 7.65 (d, 2H, H-7, H-11), 7.4 (s, 5H, N-C₆H₅), 7.25 (d, 2H, H-8, H-10), 6.5 (s, 1H, thiazole-H), 10.35 (s, 1H, NH disappeared with D_2O), 4.55 (d, 2H, NHCH₂, coalesced to singlet with D_2O exchange) 2.65(t, 2H, CH_2 , benzylic), 1.6 (m, 2H, CH_2), 1.35(m, 2H, CH_2), 0.95(t, 3H, CH_3), **Mass** (m/z): 322 (M⁺; 74), 279 (M-C₃H₇, 10), 218(M-C₆H₅CN,H, 16), 91(C₇H₇, 100).

4-/(4-Iso-butyl) Phenyl/-2-(N-benzyl Amino) Thiazole (3k)

(57%), m.p. $113-116^{\circ}$ C. (Found C, 74.51; H, 6.83; N, 8.68; S, 9.95%. $C_{20}H_{22}N_2S$ requires C, 74.53; H, 6.83; N, 8.69; S, 9.93%). **IR** (cm⁻¹): 3244-3042, 1623, 1592, 1567, 1499. **PMR** (CDCl₃, δ ppm): 7.7 (d, 2H, H-7, H-11), 7.35 (s, 5H, N-C₆H₅), 7.1 (d, 2H, H-8, H-10), 6.65 (s, 1H, thiazole-H), 5.8 (br, 1H, NH disappeared with D_2O), 4.5 (d, 2H, NHCH₂, coalesced to singlet with D_2O exchange) 2.5(d, 2H, CH₂, benzylic), 1.9 (m, 1H,CH(CH₃)₂), 0.95 (d, 6H, CH₃), **Mass** (m/z): 322 (M⁺; 74), 279 (M-C₃H₇, 10), 218(M-C₆H₅CN, H, 16), 91(C₇H₇, 100).

4-/(4-Ter-butyl) Phenyl/-2-(N-benzyl Amino) Thiazole (31)

(65%), m.p. 173–176°C. (Found C, 74.52; H, 6.84; N, 8.68; S, 9.94%. $C_{20}H_{22}N_2S$ requires C, 74.53; H, 6.83; N, 8.69; S, 9.93%). **IR** (cm⁻¹): 3208–3111, 1589, 1561, 1496. **PMR** (CDCl₃, δ ppm): 7.8 (d, 2H, H-7, H-11), 7.1 (s, 5H, -C₆H₅), 7.3 (d, 2H, H-8, H-10), 6.7 (s, 1H, thiazole-H), 5.6 (br, 1H, NH disappeared with D_2O), 2.3 (d, 2H, coalesced to singlet with D_2O exchange) 1.4 (s, 9H, CH₃). **Mass** (m/z): 322 (M⁺; 28), 265 (M-C₄H₉, 10), 91(C₇H₇, 100).

4-/(4-N-butyl) Phenyl/-2-/N- (2-Phenyl) Ethyl Amino/ Thiazole (3m)

(70%), m.p. $126-129^{\circ}$ C. (Found C, 74.97; H, 7.15; N, 8.31; S, 9.5%. $C_{21}H_{24}N_2S$ requires C, 74.99; H, 7.14; N, 8.33; S, 9.52%). **IR** (cm⁻¹): 3204–3125, 1591, 1493. **PMR** (**CDCl**₃, δ **ppm**): 7.7 (d, 2H, H-7, H-11), 7.1–7.4 (m, 5H, N-C₆H₅, and 2H, H-8, H-10), 6.65 (s, 1H, thiazole-H), 5.4 (br, s, 1H, NH disappeared with D₂O), 3.55 (q, 2H, NHCH₂, coalesced to triplet with D₂O exchange), 3.0 (t, 2H, NCH₂CH₂), 2.65 (t, 2H, CH₂,benzylic), 1.65 (m, 2H,CH₂), 1.35(m, 2H, CH₂), 0.95(t, 3H, CH₃), **Mass** (m/z): 336 (M⁺; 54), 245 (M-C₇H₇, 100), 232(M-C₈H₈, 94), 189(245-C₄H₈, 40).

4-/(4-Iso-butyl) Phenyl/-2-/N- (2-Phenyl) Ethyl Amino/ Thiazole (3n)

(60%), m.p. 107–109°C. (Found C, 75.01; H, 7.13; N, 8.35; S, 9.54%. $C_{21}H_{24}N_2S$ requires C, 74.99; H, 7.14; N, 8.33; S, 9.52%). **IR** (cm⁻¹): 3208, 1583, 1570, 1508, 1495. **PMR** (**CDCl**₃, δ **ppm**): 7.7 (d, 2H, H-7, H-11), 7.1–7.4 (m, 5H, C_6H_5 , and 2H, H-8, H-10), 6.65 (s, 1H, thiazole-H), 5.9 (br, s, 1H, NH disappeared with D_2O), 3.6 (t, 2H, NHCH₂), 3.0 (t, 2H, NCH₂CH₂), 2.5 (d, 2H, CH₂, benzylic), 1.9 (m, 1H,CH(CH₃)₂), 0.95(d, 6H, CH₃). **Mass** (m/z): 336 (M⁺; 62), 293 (M-C₃H₇, 12), 245(M-C₇H₇, 96), 232(M-C₈H₈, 100), 189(245-C₄H₈, 45).

4-/(4-Ter-butyl) Phenyl/-2-/N- (2-Phenyl) Ethyl Amino/ Thiazole (3o)

 $\begin{array}{l} (54\%), \text{ m.p. } 147-149^{\circ}\text{C. (Found C, } 74.96; \text{ H, } 7.12; \text{ N, } 8.35; \text{ S, } 9.55\%. \\ \text{C_{21}H$_{24}$N$_{2}$S requires C, } 74.99; \text{ H, } 7.14; \text{ N, } 8.33; \text{ S, } 9.52\%). \\ \textbf{IR (cm$^{-1}$):} \\ 3211, 1587, 1495, \text{ and } 1473. \\ \textbf{PMR (CDCl}_3, \delta \text{ ppm): } 7.8 \text{ (d, } 2\text{H, } \text{H-7, } \text{H-} 11), } 7.4 \text{ (d, } 2\text{H, } \text{H-8, } \text{H-}10), } 7.2-7.3 \text{ (m, } 5\text{H, } \text{C}_6\text{H}_5), } 6.7 \text{ (s, } 1\text{H, } \text{thiazole-H), } 5.5 \text{ (br, s, } 1\text{H, } \text{NH disappeared with } \text{D}_2\text{O}), } 3.6 \text{ (q, } 2\text{H, } \text{NHCH}_2, \text{ coalesced to triplet with } \text{D}_2\text{O} \text{ exchange}), } 3.0 \text{ (t, } 2\text{H, } \text{NCH}_2\underline{\text{CH}}_2), } 1.4 \text{ (s, } 9\text{H, } \text{CH}_3). \\ \textbf{Mass (m/z): } 336 \text{ (M$^+$; 64), } 321 \text{ (M-CH}_3, } 10), \\ 245 \text{ (M-C}_7\text{H}_7, } 73), \\ 232 \text{ (M-C}_8\text{H}_8, } 100), \\ 189 \text{ (245-C}_4\text{H}_8, } 43). \\ \end{array}$

4-/(4-N-butyl) Phenyl/-2-/N- (2-(4-Methoxyphenyl) Ethyl) Amino/Thiazole (3p)

 $\begin{array}{l} (77\%), \text{ m.p. } 108-110^{\circ}\text{C. (Found C, } 72.15; \text{ H, } 7.11; \text{ N, } 7.62; \text{ S, } 8.76\%. \\ \text{C_{22}H$_{26}$N$_{2}$OS requires C, } 72.13; \text{ H, } 7.10; \text{ N, } 7.65; \text{ S, } 8.74\%). \\ \textbf{IR (cm$^{-1}$):} \\ 3208, 1610, 1591, 1512, \text{ and } 1491. \\ \textbf{PMR (CDCl}_3, \delta \text{ ppm): } 7.8 \text{ (d, } 2\text{H, } \text{H-7, H-11}), 6.9 \text{ (d, } 2\text{H, H-8, H-10}), 7.1-7.3 \text{ (m, } 4\text{H,H-18, H-19, H-21} \text{ and } \text{H-22}), 6.65 \text{ (s, } 1\text{H, thiazole-H), } 5.6 \text{ (br, s, } 1\text{H, NH disappeared with } \text{D$_2$O}, 3.8 \text{ (s, } 3\text{H, OCH$_3}), 3.55 \text{ (q, } 2\text{H, NHCH$_2$, coalesced to triplet with } \text{D$_2$O exchange}), 2.95 \text{ (t, } 2\text{H, NCH$_2$\underline{CH$_2$}), } 2.65 \text{ (t, } 2\text{H, benzylic}), 1.65 \text{ (m, } 2\text{H,CH$_2$), } 1.4 \text{ (m, } 2\text{H, CH$_2$), } 1.0 \text{ (t, } 3\text{H, CH$_3$), } \text{Mass (m/z): } 336 \text{ (M$^+$; 10), } 245 \text{ (M-C_8H$_9$O, } 100), 232 \text{(M-C_9H$_{10}$O, } 100), 189 \text{(245-C_4H$_8, } 28). \\ \end{array}$

4-/(4-Iso-butyl) Phenyl/-2-/N- (2-(4-Methoxyphenyl) Ethyl) Amino/Thiazole (3q)

(54%), m.p. $95-98^{\circ}$ C. (Found C, 72.11; H, 7.09; N, 7.66; S, 8.72%. $C_{22}H_{26}N_2OS$ requires C, 72.13; H, 7.10; N, 7.65; S, 8.74%). **IR** (cm⁻¹): 3383, 3208, 1612, 1585, 1556, 1512, 1491. **PMR** (CDCl₃, δ ppm): 7.7 (d, 2H, H-7, H-11), 6.85 (d, 2H, H-8, H-10), 7.1–7.2(m, 4H,H-18, H-19, H-21 and H-22), 6.65 (s, 1H, thiazole-H), 5.45 (br, s, 1H, NH disappeared with D_2O), 3.8 (s, 3H, OCH₃), 3.5 (q, 2H, NHCH₂, coalesced to triplet with D_2O exchange), 2.95 (t, 2H, NCH₂CH₂), 2.6 (t, 2H, benzylic),1.9 (m,1H, CH(CH₃)₂), 0.95 (d, 6H, CH₃), **Mass** (m/z): 336 (M⁺; 10), 245 (M-C₈H₉O, 17), 232 (M-C₉H₁₀O, 100), 189(245-C₄H₈, 35).

4-/(4-Ter-butyl) Phenyl/-2-/N- (2-(4-Methoxyphenyl) Ethyl) Amino/Thiazole (3r)

(62%), m.p. 124-127°C. (Found C, 72.10; H, 7.13; N, 7.67; S, 8.75%. C₂₂H₂₆N₂OS requires C, 72.13; H, 7.10; N, 7.65; S, 8.74%). **IR** (cm⁻¹): 3285, 1612, 1564, 1512, and 1489. **PMR** (**CDCl**₃, δ **ppm**): 7.8 (d, 2H, H-7, H-11), 7.4 (d, 2H, H-8, H-10), 7.1(d, 2H, H-19, H-21), 6.9 (d, 2H, H-18, H-22), 6.7 (s, 1H, thiazole-H), 5.7 (br, s, 1H, NH disappeared with D₂O), 3.8 (s, 3H, OCH₃), 3.5 (q, 2H, NHCH₂, coalesced to triplet with D₂O exchange), 2.9 (t, 2H, NCH₂<u>CH</u>₂), 1.4 (s, 9H, CH₃), **Mass** (**m/z**): 336 (M⁺; 10), 245 (M-C₈H₉O, 10), 232 (M-C₉H₁₀O, 100), 189(245-C₄H₈, 15).

4-/(4-n-Butyl) Phenyl/-2- (N-Acetyl Amino) Thiazole (3s)

(51%), m.p. $191-193^{\circ}$ C. (Found C, 65.65; H, 6.55; N, 10.22; S, 11.7%. $C_{15}H_{18}N_2OS$ requires C, 65.69; H, 6.56; N, 10.21; S, 11.67%). **IR** (**cm**⁻¹): 3237 (NH), 1654 (C=O), 1575, 1557, and 1490. **PMR** (**CDCl**₃, δ **ppm**): 7.7 (d, 2H, Ar-H ortho to thiazole), 7.3 (d, 2H, Ar-H ortho to n-butyl), 6.8 (s, 1H, thiazole-H), 6.4 (br, s, 1H, NH, disappeared with D_2O exchange),

2.65 (t, 2H, n-butyl), 1.65 (m, 2H, n-butyl), 2.1(s, 3H, COCH₃), 1.4 (m, 2H, n-butyl) 1.1 (s, 3H, n-butyl). **Mass (m/z):** $274(M^+; 43)$, $217(M-C_4H_9, 18)$, 202 (217-CH₃, 48).

4-/(4-Iso-butyl) Phenyl/-2- (N-acetyl Amino) Thiazole (3t)

 $\begin{array}{l} (55\%),\,\text{m.p.}\ 189-192^{\circ}C.\ (Found\ C,65.71;\ H,6.58;\ N,\ 10.20;\ S,\ 11.65\%.\ C_{15}H_{18}N_{2}OS\ requires\ C,65.69;\ H,6.56;\ N,\ 10.21;\ S,\ 11.67\%).\ \textbf{IR}\ (\textbf{cm}^{-1})\textbf{:}\\ 3237\ (NH),\ 1654\ (C=O),\ 1575,\ 1557,\ 1490.\ \textbf{PMR}\ (\textbf{CDCl}_{3},\ \delta\ \textbf{ppm})\textbf{:}\ 7.8\\ (d,\ 2H,\ Ar-H\ ortho\ to\ thiazole),\ 7.2\ (d,\ 2H,\ Ar-H\ ortho\ to\ isobutyl),\ 7.1(s,\ 1H,\ thiazole-H),\ 11.8\ (br,\ s,\ 1H,\ NH),\ 2.5(d,\ 2H,\ benzylic),\ 1.9(m,\ 1H,\ CH),\ 1.75\ (s,\ 3H,\ COCH_{3}),\ 0.9(d,\ 6H,\ CH_{3}),\ \textbf{Mass}\ (\textbf{m/z})\textbf{:}\ 274(M^{+};\ 52),\ 232\ (M-CH_{2}CO,\ 78),\ 189(232-C_{3}H_{7},\ 100),\ 147(189-NCNCH_{2},\ 17). \end{array}$

4-/(4-Ter-butyl) Phenyl/-2-(N-acetyl Amino) Thiazole (3u)

(64%), m.p. $232-235^{\circ}$ C. (Found C, 65.67; H, 6.54; N, 10.19; S, 11.68%. $C_{15}H_{18}N_2OS$ requires C, 65.69; H, 6.56; N, 10.21; S, 11.67%). **IR** (cm⁻¹): 3230 (NH), 1660 (C=O), 1571, 1556, and 1491. **PMR** (**DMSO-d**₆, δ **ppm**): 7.8 (d, 2H, Ar-H ortho to thiazole), 7.4 (d, 2H, Ar-H ortho to terbutyl), 7.1(s, 1H, thiazole-H), 11.2–11.6 (br, s, 1H, NH disappeared with D_2O), 1.8 (d, 3H, COCH₃ coalesced to a singlet with D_2O exchange), 1.4 (s, 9H, CH₃), **Mass** (m/z): 274(M⁺; 62), 259(M-CH₃, 22), 232 (M-CH₂CO, 69), 217(232-CH₃ or M-C₄H₉, 100), 189(217-CO, 12).

4-/(4-N-butyl)/Phenyl/- 2-(Diamino Methyleneimino) Thiazole (4a)

(42%), m.p. 256-258°C. (Found C, 61.33; H, 6.57; N, 20.41; S, 11.65%. $C_{14}H_{18}N_4S$ requires C, 61.31; H, 6.56; N, 20.43; S, 11.67%). (**IR** cm⁻¹): 3425–3116, 1657, 1649, 1599, 1549, and 1484. **PMR** (**CDCl**₃+**DMSOd**₆, δ **ppm**): 7.7 (d, 2H, Ar-H, ortho to thiazole), 7.2 (d, 2H,Ar-H, ortho to n-butyl), 6.75 (s, 1H, thiazole-H), 6.0–7.0 (br, s, 4H, NH₂, disappeared with D_2O), 2.65 (t, 2H, benzylic), 1.6(m, 2H, H-13), 1.35 (m, 2H, H-14), 0.95 (t, 3H, CH₃). **Mass** (m/z): 274 (M⁺; 100), 257 (M-NH₃, 61), 232 (M- C_3H_6 or M-NCNH₂, 27), 214 (257- C_3H_7 , 80), 189 (232- C_3H_7 , 60) 147 (189-NCNH₂, 29).

4-/(4-lso-butyl) Phenyl/-2-(Diamino Methyleneimino) Thiazole (4b)

(35%), m.p. 238–240°C. (Found C, 61.29; H, 6.56; N, 20.41; S, 11.68%. $C_{14}H_{18}N_4S$ requires C, 61.31; H, 6.56; N, 20.43; S, 11.67%). (**IR** cm⁻¹): 3440–3172, 1601, 1649, 1536, 1500, and 1460. **PMR** (**DMSO-d**₆, δ **ppm**): 7.75 (d, 2H, Ar-H, ortho to thiazole), 7.2 (d, 2H, Ar-H, ortho to Isobutyl), 7.05 (s, 1H, thiazole_H), 6.8–7.0 (br, s, 4H, NH₂, disappeared with D_2O), 2.45 (d, 2H, benzylic), 1.82–2.0(m, 1H, CH(CH₃)₂),

 $0.9 (d, 6H, CH_3)$. **Mass (m/z):** 274 (M⁺; 43), 257 (M-NH₃, 17), 232 (M-C₃H₆ or M-NCNH₂, 44), 189 (232-C₃H₇, 100), 147 (189-NCNH₂, 19).

4-/(4-Ter-butyl) Phenyl/-2-(Diamino Methyleneimino) Thiazole (4c)

(35%), m.p. 242–243°C. (Found C, 61.30; H, 6.57; N, 20.41; S, 11.68%. $C_{14}H_{18}N_4S$ requires C, 61.31; H, 6.56; N, 20.43; S, 11.67%). (**IR cm**⁻¹): 3445–3435, 1599, 1649, 1558, and 1497. **PMR (CDCl**₃, δ **ppm)**: 7.80 (d, 2H, Ar-H, ortho to thiazole), 7.45 (d, 2H, Ar-H, ortho to terbutyl), 7.15 (s, 1H, thiazole-H), 6.95–7.15 (br, s, 4H, NH₂, disappeared with D₂O), 1.35 (s, 9H, CH₃). **Mass (m/z)**: 274 (M⁺; 65), 257 (M-NH₃, 20), 242 (257-CH₃), 232 (M-C₃H₆ or M-NCNH₂, 59), 217 (M-C₄H₉, 100), 189 (232-NCNH₂, H, 18) 175 (232-C₄H₉, 15).

4-/(4-N-butyl) Phenyl/-2-(N-methyl-N-acetyl Amino) Thiazole (5a)

(41%), m.p. $119-121^{\circ}$ C. (Found C, 66.70; H, 6.95; N, 9.70; S, 11.09%. $C_{16}H_{20}N_2OS$ requires C, 66.66; H, 6.94; N, 9.72; S, 11.11%). (**IR** cm⁻¹): 3115 (CH), 1663 (C=O), 1542, and 1491. **PMR** (**CDCl**₃, δ **ppm**): 7.80 (d, 2H, Ar-H, ortho to thiazole), 7.20 (d, 2H, ortho to ter butyl), 7.1 (s, 1H, thiazole-H), 3.8 (s, 3H, NCH₃), 2.65 (t, 2H, benzylic), 2.4 (s, 3H, COCH₃), 1.6 (m, 2H, CH₂), 1.4(m, 2H, -CH₂-), 0.9 (t, 3H, CH₃). **Mass** (**m/z**): 288 (M⁺; 39), 246 (M-CH₂CO, 100), 203 (246-C₃H₇, 77).

4-/(4-lso-butyl) Phenyl/-2-(N-methyl-N-acetyl Amino) Thiazole (5b)

(38%), m.p. 130–132°C. (Found C, 66.63; H, 6.92; N, 9.75; S, 11.14%. $C_{16}H_{20}N_2OS$ requires C, 66.66; H, 6.94; N, 9.72; S, 11.11%). (**IR** cm⁻¹): 3108 (CH), 1670 (C=O), 1536, and 1493. **PMR** (**CDCl**₃, δ **ppm**): 7.80 (d, 2H, Ar-H, ortho to thiazole), 7.20 (d, 2H, ortho to ter butyl), 7.1 (s, 1H, thiazole-H), 3.8 (s, 3H, NCH₃), 2.5 (d, 2H, benzylic), 2.4 (s, 3H, COCH₃), 1.9 (m, 1H, CH(CH₃)₂), 0.9 (d, 6H, CH₃). **Mass** (m/z): 289 (MH⁺, 42), 288 (M⁺; 47), 246 (M-CH₂CO, 97), 203 (246- C_3H_7 , 100).

4-/(4-Ter-butyl) Phenyl/-2-(N-methyl-N-acetyl Amino) Thiazole (5c)

(52%), m.p. 120–122°C. (Found C, 66.68; H, 6.97; N, 9.71; S, 11.13%. $C_{16}H_{20}N_2OS$ requires C, 66.66; H, 6.94; N, 9.72; S, 11.11%). (**IR** cm⁻¹): 3112 (CH), 1668 (C=O), 1536, and 1493. **PMR** (**CDCl**₃, δ **ppm**): 7.80 (d, 2H, Ar-H, ortho to thiazole), 7.50 (d, 2H, ortho to ter butyl), 7.1 (s, 1H, thiazole-H), 3.8 (s, 3H, NCH₃), 2.4 (s, 3H, COCH₃), 1.4 (s, 9H, CH₃). **Mass** (m/z): 288 (M⁺; 37), 246 (M-CH₂CO, 89), 231 (M-C₄H₉, 100).

REFERENCES

- A. Bizhev, N. Boyadhziev, and V. Natova, Farmatziya, 37 (5), 14, (1987); Chem. Abstr., 108, 180074g (1988).
- [2] G. J. Mean Rejon and R. O. Mocelo Castell, Afinidad, 50, 447 (1993); 319–322. Chem. Abstr., 120, 244806e (1994).
- [3] Y. Ozato, N. Tamura, H. Masumori, A. Kojima, F. Nishikaku, and Y. Kimura, JP, 88, 152368 and 93247014, Drugs of the future., 19(4), 347, (1994).
- [4] J. Yoshinaga, T. Shogaki, J. Katika, H. Ozeki, and Y. Kato, Eur. Pat. EP., 321 115; Chem. Abstr., 112, p7490z (1990).
- [5] (a) Y. Matano and T. Ikegami, In *Organobismuth Chemistry*, H. Suzuki, Y. Matano, Eds. (Elsevier, New York, 2001), 329–469. Vol. 21; (b) N. M. Leonard, L. C. Wieland, and R. S. Mohan, *Tetrahedron.*, 58, 8373 (2002).
- [6] (a) B. Prasanna and G. V. P. Chandra Mouli, Phosphorous, Sulfur, and Silicon, and the Related Elements., 179(10), 2059, (2004); (b) P. Vijay Kumar Reddy, P. Naveen Kumar, and G. V. P. Chandra Mouli, J. Heterocyclic. Chem., 41,1 (2004).
- [7] (a) Y. M. Zhang, T. B. Wei, and L. L Wang, Synth. Commun., 27, 751, (1997); (b) Y.
 M. Zhang, T. B. Wei, and L. M. Gao, Synth. Commun., 31, 3099 (2001).
- [8] A. Geronikaki and G. Theophilidis, Eur. J. Med. Chem., 27(7), 709 (1992).
- [9] J. G. Vincent and H. W. Vincent, Proc. Soc. Boil. Medica., 55, 162 (1944).
- [10] Anonymous, *Phytopathology*, **37**, 992 (1947).
- [11] C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).